Inside:

Page 127: Missed Canal Systems are the Most Likely Basis for Endodontic Retreatment of Molars

Page 141: CAD/CAM and Lithium Disilicate: An Anterior Esthetic Case Study
CLINICAL REPORT

Missed Canal Systems are the Most Likely Basis for Endodontic Retreatment of Molars

David E. Witherspoon, BDSc, MS
Joel C. Small, DDS, MBA
John D. Regan, DDS, MSc, MS

Abstract

Unfortunately, a small percentage of endodontically treated teeth do not respond favorably to non-surgical root canal treatment. Failure to locate and treat an additional canal system is cited as the principle basis for endodontic retreatment. The aim of this retrospective clinical study was to identify the incidence of additional or missed canal systems in molar retreatment cases in a private practice setting. Missed canals were identified in 64 of the 133 previously treated teeth (48%). Of the total missed canals, 11% involved a maxillary second molar and 44% involved a maxillary first molar. For the maxillary first molars, 93% of all missed canal were identified in the mesiobuccal root. In the mandibular second molars, 29% of missed canals were identified in the distal and 71% were identified in the mesial root. In the mandibular first molars, 86% of missed canals were identified in the distal and 14% were identified in the mesial root. The results of the current study support the findings of previous studies and confirm the importance of locating, instrumenting and obturating the additional canal systems in molar endodontic treatment. Given that failure to locate all canal systems of a tooth contributes significantly to unsuccessful endodontic treatment, all measures available to the clinician to maximize canal identification should be used.

KEY WORDS: missed root canal, endodontic retreatment, tooth anatomy

er chance of being successfully retreated (12). The treatment of the disease consists of eradicating the root canal microbes or substantially reducing the microbial load and preventing reinfection by placing a well compacted root canal filling to the ideal working length and a well formed coronal restoration (Figure 1) (13). Clinically, this involves the chemo-mechanical removal of microorganisms and their substrate followed by obturation of the canal space.

Figure 1. A: preoperative radiograph; B: preoperative radiograph with sinus trace in place; C: postoperative radiograph; D: 1-year recall radiograph.
Complex tooth anatomy can prove to be a considerable challenge for the clinician during cleaning, shaping, and obturation of the root canal system. It is not surprising then that one of the most likely causes of persistence or development of periradicular disease following endodontic therapy is a failure to locate, clean, shape, and obturate all canal systems within a tooth (Figures 2 and 3) (11,14,15). Nonsurgical retreatment has been shown to be associated with a high degree of success (Figure 4) (12,16-22). In vitro studies have contributed significantly to the understanding of root canal morphology. They demonstrate the complexities that the clinician faces when undertaking endodontic treatment (Table 1). Several clinically based studies, focusing mainly on the mesiobuccal root (MB) of the maxillary molars, have investigated the presence of additional canal systems in failing root canal treated teeth (15,23,24). In 2 separate studies of the presence of additional canal system in the MB root of the maxillary molars, Wolcott et al found that the incidence of an additional canal system in the MB root in first molar non-surgical retreatments was 66-67% and 40-44%

Figure 2. A: cone-beam computed tomography (CBCT) image of an endodontically treated mandibular second molar; B: CBCT image of an endodontically-treated mandibular second molar with the likely position of the missed mesiolingual canal indicated (red dot and red arrows); C: preoperative radiograph; D: postoperative radiograph (note the presence of a cleaned and shaped canal in the mesiobuccal root); E: 1-year recall radiograph.
Figure 3. A: preoperative radiograph of an endodontically treated maxillary second molar; B: CBCT image of the same endodontically-treated maxillary second molar; C: axial view demonstrating a C-shaped buccal root system; D: missed canal space.

Figure 4. A: preoperative radiograph; B: postoperative radiograph; C: 1-year recall radiograph.

Figure 5. A: Initial access, red arrow indicating the presence of a missed second mesiobuccal canal; B: green arrow indicating the shaped second mesiobuccal canal; C: final obturation.
in second molar non-surgical retreatments (23,24). Hoen and Pink reported 42% of nonsurgical retreatment cases had missed canals. Furthermore, additional canal space was located and treated in 89% of nonsurgical retreatments (15).

The aim of this clinical study was to identify the incidence of missed canal systems in molar retreatment cases in a private practice setting and discuss contemporary measures to facilitate successful treatment.

Materials and Methods

The data was retrospectively collected from patients referred to 2 endodontists for the management of failing endodontically-treated teeth. Consecutive nonsurgical retreatments of all molar teeth for a period of 1 year were included in this study. The teeth were examined and a diagnosis and treatment plan was established. Informed consent was routinely obtained from each patient before examination and treatment, and there were no contraindications to nonsurgical endodontic treatment. Standard straight-on and distal angle periapical radiographs were taken of each tooth. A second canal was suspected if multiple periodontal ligament spaces or apices were noted radiographically or if an instrument appeared to be off center in the root. During the treatment, the tooth number and the presence of an additional canal system was recorded in the practice management software (TDO; The Digital Office, Santa Barbra, California, USA).

All treatments were completed using a Zeiss (Carl Zeiss Meditec, Dublin, California, USA) dental operating microscope at a magnification of at least 7.5 power. In maxillary molar teeth, access preparations were routinely modified to a rhomboidal shape and troughing of the fissure or groove between the MB and palatal canals was routinely performed (25-26). Troughing was continued until the presence or absence of a second mesiobuccal (MB2) canal was established (Figure 5). The depth of the trough was not recorded. To be included and recorded as a second canal, the canal had to be negotiable and obturated to its own apex or within 5 mm of the apex when contiguous with an adjacent canal system.

Results

A total of 133 molars were examined. Missed canals were identified in 64 of the 133 previously treated teeth (48%). Of the total missed canals, 11% (n = 7) involved a maxillary second molar (Figure 7), and 44% (n = 28) involved a maxillary...
first molar. For the mandibular teeth, 11% (n = 7) involved a second molar, and 34% (n = 22) involved a first molar. With respect to the missed canal system in the maxillary second molars, 71% (n = 5) were located within the MB root. For the maxillary first molars, 93% (n = 26) of all missed canals within this tooth group were identified in the MB root. For the mandibular second molars, 29% (n = 2) were identified in the distal and 71% (n = 5) were identified in the mesial root. A summary of the results is presented in Table 2. Figures 6–8 are examples of cases of previous endodontically-treated teeth where canal systems remain unidentified and untreated.

Discussion

Diagnosis is undoubtedly the most important part of clinical endodontics, especially in retreatment cases. Teeth are frequently relegated to the “failure” category without adequate assessment of the etiology for the failure. “Failure” is frequently a direct result of the presence of uninstrumented and inadequately debrided canal space such as extra canals, anastomoses, or unusual anatomical morphology. Canals may be left untreated if their presence is not recognized by the dentist (27). It is incumbent on the clinician to do a thorough and exhaustive assessment, using all available technologies and techniques, before determining the appropriate treatment for the tooth, be it retreatment or extraction.

Failure to locate and treat a second canal system contributes importantly to unsuccessful root canal treatments. This has widespread implications for patient morbidity and additional financial consequences and inconvenience for patients. The majority of studies that examine the impact of missed canal systems during root canal treatment focus on the MB roots of maxillary molars, which has been recognized for decades and demonstrated in both in-vitro and in vivo stud-
Figure 7. A: CBCT image of an endodontically-treated maxillary second molar (red dot and red arrow indicating the position of a missed MB2 canal); B: CBCT image of an endodontically-treated maxillary second molar (red dot and red arrow indicating the position of a missed distobuccal canal); C: preoperative radiograph; D: postoperative radiograph (note the presence of cleaned and shaped MB2 and distobuccal canal systems); E: 12-month recall radiograph; F: 12-month recall radiograph.

Table 2. Summary Data

<table>
<thead>
<tr>
<th>Tooth No.</th>
<th>No. of teeth treated</th>
<th>No. of teeth with missed canals</th>
<th>% of teeth with missed canals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tooth 15</td>
<td>8</td>
<td>6</td>
<td>75%</td>
</tr>
<tr>
<td>Tooth 14</td>
<td>27</td>
<td>14</td>
<td>52%</td>
</tr>
<tr>
<td>Tooth 2</td>
<td>4</td>
<td>1</td>
<td>25%</td>
</tr>
<tr>
<td>Tooth 3</td>
<td>19</td>
<td>14</td>
<td>74%</td>
</tr>
<tr>
<td>Tooth 19</td>
<td>30</td>
<td>10</td>
<td>33%</td>
</tr>
<tr>
<td>Tooth 18</td>
<td>4</td>
<td>3</td>
<td>75%</td>
</tr>
<tr>
<td>Tooth 30</td>
<td>27</td>
<td>12</td>
<td>44%</td>
</tr>
<tr>
<td>Tooth 31</td>
<td>14</td>
<td>4</td>
<td>29%</td>
</tr>
<tr>
<td>Totals</td>
<td>133</td>
<td>64</td>
<td>48%</td>
</tr>
</tbody>
</table>
ies (23,24,28-42). Historically, in vitro studies have contributed significantly to the understanding of root canal morphology. Results from these studies have highlighted the prevalence of MB2 canals in extracted maxillary molar teeth. A 2005 in vivo examination of 5,616 maxillary molars revealed that MB2 canals were present in 60% of first and 35% of second molars (23). The definition of what constitutes a “missed” canal has major impact on the results of individual studies. In 2005 Wolcott stipulated that to be included in the study, the MB2 canal had to be negotiated and obturated either separate from the MB or within 5mm of the apex when it joined the MB canal (23). These ‘stringent’ criteria account for the slightly lower incidence of negotiable MB2 canals compared to other in vivo studies (33,43-45). The present study adopted similar criteria. In the Kulid and Peters study, 2 canals were identified in 95.2% of the MB roots in the first and second maxillary molars examined (40). In a review of laboratory versus clinical studies, Pomeranz and Fishelberg documented significant variability in the frequency with which an MB2 canal is located (41).

Several studies have highlighted the importance of using a dental operating microscope especially when treating maxillary molar teeth. Using an dental operating microscope MB2 canal systems were located and negotiated in 80% of cases which was significantly higher than when a microscope was not used (47). Additionally, using the dental operating microscope, significantly improved access cavity preparation and

Figure 8. 1: CBCT image of an endodontically-treated mandibular first molar; 2: CBCT image of an endodontically-treated mandibular first molar with the likely position of the missed MB canal indicated (A&B); 3: 3D reconstruction demonstrating (C) root resorption of the MB root and (D) the mental nerve foramen; 4: preoperative radiograph; 5: postoperative radiograph (note the presence of a cleaned and shaped canal in the MB root); 6: 9-month recall radiograph.
accuracy in identifying canals (48). It has been demonstrated that the use of a dental operating microscope by experienced endodontists enhances the chance of identifying additional canal systems. Buhrley et al showed that the use of magnification increases the chance of locating the additional canal systems by 3x in general and by 4x in the first maxillary molar tooth (49). The inherent variability in the anatomy of teeth and in the practical difficulties encountered in treating molar teeth in patients dictate that the clinician should employ all the available resources including enhanced illumination, magnification and CBCT to insure the most predictable outcome of treatment.

Recently, the use of small field of view CBCT in endodontic practice has allowed the clinician to directly visualize the canal system morphology before and during treatment thereby facilitating the location of additional canal systems. (Figures 6–8) (46). (The Food and Drug Administration approved the first CBCT machines for use in dentistry in the year 2000). This technological leap allows visualization of the tooth canal morphology in genuine 3D while exposing the patient to low levels of radiation. It is well recognized that diagnostic acuity increases with the number of different radiological views available and so 2 or more periapical films have been recommended (50). With CBCT, hundreds of different views are available with a single scan. Each of these images can then be further manipulated and enhanced using a number of software programs thereby maximizing the information available to the clinician (46).

As interest in CBCT in endodontics increases, a growing body of evidence underlines the accuracy of the technology to identify the existence of periradicular lesions or resorptive defects not normally identifiable on periapical films (51–55). This allows for earlier and more accurate diagnosis of disease entities. When assessing a tooth for retreatment, CBCT axial views are especially valuable in locating potential etiological factors in the failure of the previous non successful root canal therapy (Figure 7). The presence of extra canals or overlooked canal system space is rapidly and clearly identified (Figure 8) and aberrant root morphology can be identified and treated accordingly. The detection rate of MB2 canals in maxillary molars in vivo has been consistently lower than that of laboratory-based reports (56). The use of CBCTs in endodontic diagnosis can be justified while concurrently satisfying the goals of ALARA (as low as reasonably achievable). This has been confirmed in recent reports, which in turn have been referenced in the American Association of Endodontists Colleague for Excellence Summer 2011 newsletter (58–60). It is stated in this newsletter the effective dose for an anterior focused field CBCT scan is less than that (0.7 times) of a single digital periapical radiograph. The effective dose for a maxillary posterior focused field CBCT scan is approximately 1.4 times higher than that of a digital periapical radiograph while that of a mandibular posterior focused field CBCT scan is 5.4 times that of a single digital periapical radiograph. In addition, CBCT studies frequently allow the clinician to eliminate multiple standard periapical radiographs, which are sometimes necessary for adequate preoperative evaluation of the tooth anatomy.

The results of the current study support the findings of previous studies and confirm the importance of locating, instrumenting, and obturating the additional canal systems in molar endodontic treatment. The study underlines the need for the operator to be cognizant of the anatomical anomalies existing in molar canal systems and the clinician should be technically competent to address these issues.
References

DENTAL CHAIR UPHOLSTERY KITS

If your dental chair upholstery snaps, bolts or Velcros to a chair frame, you have a ‘kit’ style chair. These cushions remove easily and the new upholstery goes on just as easily. If you are not sure if your chair is a ‘kit’ style, give us a call, or e-mail us a picture. Kit style chairs include, Adec, Pelton Crane, Belmont, Healthco, and others. We have specialized in upholstering dental chairs since 1985, shown at the Chicago Midwinter for 23 years, and are experienced in all makes and models. Our shipppable, kit style chairs can be half the cost of on-site upholstery, or new upholstery from the manufacturer. We also replace broken plastic original parts, with sturdier plastic or plywood parts, where needed. Call us today to discuss your upholstery needs!

MILLER DENTAL UPHOLSTERY

STEVE MILLER
630-761-1450
E-DENTALUPHOLSTERY.COM
S.MILLER8@COMCAST.NET